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The problem of transverse vibrations of homogeneous isotropic rotating
beams due to the passage of di�erent types of loads is of considerable practical
interest. Using analytical and numerical methods, this paper investigates the
stochastic dynamic response of a rotating simply supported beam subjected
to a random force with constant mean value moving with a constant speed
along the beam. The beam is modelled by Euler±Bernoulli, Rayleigh, and
Timoshenko beam models. The problem is formulated by means of partial
di�erential equations. Closed form solutions for the mean and variance of the
response for the three models are obtained. The results show the e�ect of load
speed, beam rotating speed, and geometrical size of the beam on the random
response of the beam represented by some random dynamic coe�cients.

# 1999 Academic Press

1. INTRODUCTION

The general problem of transverse vibrations of beams resulting from the
passage of moving loads is of considerable practical interest in the dynamics of
structures. It has a wide range of applications in the civil, mechanical and
aircraft industries. This problem has been studied in the context of machinery
operations and the behavior of bridges, runways, rails, roadways, pipelines, etc.
Several investigations have been performed to study different aspects of such a
problem.
Fryba [1, 2] studied the response of a simply supported beam, using an Euler±

Bernoulli model, subjected to a moving single and continuous random forces. He
studied the effects of the constant speed and damping on the response of the
beam. Zibdeh [3] dealt with the random vibration of a simply supported elastic
beam subjected to a random point load moving with time-varying velocity. The
beam is also subjected to axial deterministic forces. Closed form solutions for the
mean and variance of the response are obtained. Zibdeh and Rackwitz [4]
investigated higher order moments of a simply supported beam subjected to a
stream of random moving loads of Poissonian type. The stream of loads was
assumed to move with a time varying velocity. The results were veri®ed by
simulation. They have also used analytical and numerical methods [5] to
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investigate the statistical response moments of beams with general boundary
conditions subjected to a stream of random moving loading systems of
Poissonian pulse type. Chang [6] presented a method to perform the
deterministic and random vibration analysis of a Rayleigh Timoshenko beam on
an elastic foundation, he used modal analysis to compute the dynamic responses
of the structure, such as the displacement and bending moment and some
statistical responses such as mean square values of the dynamic displacement
and bending moment. Iwankiewicz and Sniady [7] studied the problem of the
dynamic response of a beam to the passage of a train of concentrated forces with
random amplitudes. They obtained explicit expressions for the expected value
and the variance of the beam de¯ection. Katz et al. [8] have used the Euler±
Bernoulli, Rayleigh and Timoshenko beam theories to model a rotating shaft.
The shaft, which is simply supported, rotates at a constant rotational speed and
is subjected to a deterministic load which is of constant magnitude and moving
with a constant axial velocity. Closed form solutions of the response for the
three models are obtained. Argento and Scott [9] studied the response of rotating
and non-rotating Timoshenko beams subjected to an accelerating ®xed direction
distributed surface force. The solution for pinned supports is set up using multi-
integral transforms, and the inversion is expressed in terms of convolution
integrals. These are numerically integrated for a uniformly distributed load
having an exponentially varying velocity function. Argento et al. [10] studied the
response of a rotating Rayleigh beam with different boundary conditions
subjected to an axially accelerating distributed surface line load. The effects of
load speed, beam rotational speed and geometry are studied.
This paper presents an extension to the aforementioned work. The in¯uence of

a random load moving with a constant velocity on the random vibration
characteristics of a simply-supported rotating beam is studied. The approach is
based on Euler±Bernoulli, Rayleigh and Timoshenko beam theories in addition
to stochastic methods. Closed form solutions for the mean and variance of the
de¯ection are obtained and results are presented by means of some random
dynamic coef®cient. The effect of load speed, rotational speed of the beam and
the Rayleigh beam coef®cient on the dynamic coef®cient are also studied.
Comparisons with known solutions of random loads moving with uniform
velocity are made.

2. FORMULATION

The beam considered is assumed to be homogenous and isotropic with a
uniform cross-section (A) rotating about its longitudinal axis with a constant
angular velocity (O) and simply supported at its two ends. A load is assumed to
move along the beam with a constant velocity which is usually called the axial
velocity of the moving load. The equations of motion for the different beam
models are presented below:
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(1) Euler±Bernoulli beam model:

EI
@4v�x, t�
@x4

� rA
@2v�x, t�
@t2

� P�x, t�, �1�

where E is the modulus of elasticity, I is the moment of inertia of the cross-
section, r is the density of the material, A is the cross-sectional area, v(x, t) is the
transverse de¯ection of the beam at point x and time t and P(x, t) is the applied
random force moving with a constant speed, written as

P�x, t� � d�xÿ ct�P�t�: �2�
Here d(.) denotes the familiar delta function, c is the speed of the force, and P(t)
is the concentrated force which is randomly variable in time de®ned as

P�t� � Po � Po�t�, �3�
where Po is the constant mean value representing the deterministic part of the
force and Po(t) is the random part of the force to be de®ned later.
The boundary and initial conditions are

v�0, t� � 0,
@2v�0, t�
@x2

� 0, v�l, t� � 0,
@2v�l, t�
@x2

� 0, �4�

v�x, 0� � 0,
@v�x, 0�
@t

� 0: �5�

(2) Rayleigh beam model:

EI
@4v

@x4
� rA

@2v

@t2
ÿ rI

@2v

@x2 @t2
ÿ 2iO

@3v

@x2 @t

� �
� P�x, t�, �6�

where the boundary and initial conditions are as given in equations (4) and (5),
respectively.

(3) Timoshenko beam model:

rA
@2v

@t2
ÿ KAG

@2v

@x2
ÿ @c
@x

� �
� P�x, t�, �7�

EI
@2c
@x2
� KAG

@v

@x
ÿ c

� �
ÿ rI

@2c
@t2
ÿ 2iO

@c
@t

� �
� 0, �8�

where K denotes the Timoshenko shear correction factor, G is the shear modulus
and c is the slope of the de¯ection curve due to bending deformation alone. The
bounday and initial conditions are given as

v�0, t� � 0,
@c�0, t�
@x

� 0, v�l, t� � 0,
@c�l, t�
@x

� 0, �9�
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v�x, 0� � 0,
@v�x, 0�
@t

� 0, c�x, 0�, @c�x, 0�
@t

� 0, �10�

Equations (7) and (8) represent the required governing equations. They neglect
damping effects but include rotary inertia and gyroscopic moment which appear
as �c and _c terms, respectively. The effect of gyroscopic term is to induce a
displacement component perpendicular to the direction of the load. In general
the equations that govern the behavior of the beam in the three models have the
following general form

L�v�x, t�� � P�x, t�, �11�
where L[.] is the operator de®ned in equations (1), (6) or (7) and (8).
The solution of equation (11) is assumed as

v�x, t� � E�v�x, t�� � vo�x, t�: �12�
Substituting equations (3) and (12) into equation (11) gives

LfE�v�x, t�� � vo�x, t�g � Po � Po�x, t�, �13�
which yields

LfE�v�x, t��g � Po, Lfvo�x, t�g � Po�x, t�: �14, 15�
Deterministic solutions of the above three models can be obtained by

considering equation (14) and such solutions may be found in reference [8]. The
random part of the response is obtained by considering equation (15). In other
words, the statistical characteristics of the ®rst order (mean value) may be
obtained from equation (14) while the statistical characteristics of the second
order are described by, equation (15). For example, the mean value or the
deterministic part of the de¯ection for the Euler±Bernoulli model is obtained by
writing the de¯ection as

v�x, t� �
X1
n�1

vn�x�qn�t�, �16�

where qn(t) are the generalized de¯ections or the modal responses, and vn(x) are
the comparison functions. The comparison functions that satisfy the boundary
conditions can be chosen as

vn�x� � sin�npx=l�: �17�
Following normal procedure, the differential equation of the nth mode of the

generalized de¯ection is written as

�qn�t� � o2
nqn�t� � Qn�t�, �18�

where
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on �
�������
EI

rA

s
np
l

� �2
�19�

and

Qn�t� � 2

lrA

�l
0

Pod�xÿ ct� sin
�
npx
l

�
dx: �20�

Carrying out the integration in equation (20) one obtains

Qn�t� � 2

lrA
Po sin ynt: �21�

This is known as the generalized force in which

yn � npc
l
: �22�

The solution of equation (18) can be written as:

qn�t� �
�t
0

hn�tÿ t�Qn�t�dt �
�t
0

hn�t�Qn�tÿ t� dt, �23�

where hn(t) is the impulse response function de®ned as

hn�t� � 1

on
sin�ont�: �24�

This equation represents the response of the system in equation (18) to an
impulse d(t) with zero initial conditions. To obtain the stochastic response, the
covariance of the force is de®ned as [1],

CPP�t1, t2� � E�Po�t1�Po�t2��, �25�
where E [.] denotes expectations. It follows that the covariance of the moving
force becomes

Cpp�x1, x2, t1, t2� � �d�x1 ÿ ct1�d�x2 ÿ ct2�CPP�t1, t2��: �26�
Using equation (20), the covariance of the generalized moving force is obtained
as

CQnQm
�t1, t2� � 4

�rAl�2 vn�ct1�vm�ct2�CPP�t1, t2�: �27�

It follows from equation (23) that the covariance of the generalized de¯ection
becomes

Cqnqm �
4

�rAl�2
�t
0

�t
0

hn�t1 ÿ t1�hm�t2 ÿ t2�vn�ct1�vm�ct2�CPP�t1, t2�dt1 dt2: �28�

In light of equation (16), the covariance of the de¯ection can be written as
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Cvv�x1, x2, t1, t2� �
X1
n�1

X1
m�1

vn�x1�vm�x2�Cqnqm�t1, t2�: �29�

The variance of the de¯ection becomes

s2v�x, t� � Cvv�x, x, t, t� �
X1
n�1

v2n�x�Cqnqm�t, t�: �30�

Upon substituting equation (28) into equation (30), the variance of the de¯ection
is written as

s2v�x, t� �
4

�rAl�2 6
v2n�x�
o2

n

�t
0

�t
0

sinon�tÿ t1� sinon�tÿ t2� sin�ynt1�

6 sin�ynt2�Cpp�t1, t2� dt1 dt2 �31�

Equation (31) represents the general form of the variance of the Euler±Bernoulli
beam subjected to a random moving force with constant velocity.
The numerical results will be arranged in the form of a ratio of the standard

deviation, of the de¯ection at mid-span point of the beam to the value of vo , the
static de¯ection of a simply supported beam at its midspan produced by a
concentrated force P acting at the midspan, de®ned as [8]

vo � Pl 3

48EI
�32�

This ratio can be expressed as a product of the coef®cient of variation Vp of the
force P(t) and the function Vvp(t), which is written as

Vv�x, t� � sv�l=2, t�=vo � VpVvp�t�: �33�

The coef®cient of variation Vv(x, t) is similar to the dynamic coef®cient in the
deterministic approach. In what follows the function Vvp(t), dependent on time
(t) is calculated at the mid-span of the beam for several types of covariances of
the force P(t) to obtain the coef®cient of variation of the de¯ection of the beam,
equation (34). The force P(t) is assumed to be a stationary random function of
(t). Two basic types of covariances are considered [1].

(a) White noise

CP�t� � SPd�t�, SP�o� � SP: �34�
(b) Constant covariance

CP�t� � s2P, SP�o� � 2Ps2Pd�w�: �35�
For the case of white noise, the variance is obtained by substituting equation
(34) into equation (31). Carrying out the integration and rearranging in
accordance with equation (33), the function Vvp(t) is written as
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Vvp�t� �
X1
n�1

96

p4
vn�l=2�

6
y2n

8n6�o2
n ÿ y2n�

sin�2on�tÿ on

yn

� �3

sin�2yn�t� sin
2on

y2n
�o2

n ÿ y2n�t
" #( )1=2

,

�36�
where the coef®cient of variation Vp in equation (33), which is analogous to the
coef®cient of variation of the force is written for the white noise case as [2]

Vp �
����������
Spol

p
=P: �37�

Following a similar procedure, the function Vvp(t) for the constant covariance
case is written as

Vvp�t� �
X1
n�1

96

n4p4
6vn�l=2�6 o2

n

o2
n ÿ y2n

sin yntÿ yn
on

sinont

� �
�38�

where the coef®cient of variation of the force Vp is [2]

Vp � sp=P: �39�
The random response of the Rayleigh beam model is obtained by substituting
equation (16) into the random part of equation (6) which yields upon
rearrangement

�qn�t� � 2odn _qn�t� � o2
nqn�t� � Qn�t�, �40�

where

o2
n �

EI
np
l

� �4
rA� rI

np
l

� �2� � , odn � ÿ
iOrl

np
l

� �2
rA� rI

np
l

� �2� � , �41, 42�

Qn�t� � 1

Mn

�t
0

Pod�xÿ ct� sin npx
l

� �
dx, Mn �

rAl� rIl
np
l

� �2� �
2

: �43, 44�

Using the convolution integral the solution of equation (40) can be found as

qn�t� �
�1
ÿ1

hn�t�Qn�tÿ t� dt �
�1
ÿ1

hn�tÿ t�Qn�t� dt, �45�

where
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hn�t� �
1

o0n
eÿodnt sin�o0nt::te0

0:::::::::::::::::::::::::t < 0

8><>:
9>=>;, �46�

and

o02n � o2
n ÿ o2

dn: �47�
Following exactly the same procedure as in the case of the Euler beam, the
variance of the de¯ection can be written as

s2v�x, t� �
X1
n�1

v2n�x�
M2

no02n

�t
0

�t
0

eÿodn�tÿt1� sino0n�tÿ t1� eÿodn�tÿt2� sino0n�tÿ t2�

6 sin�ynt1� sin�ynt2�CPP�t1, t2� dt1t2, �48�
where yn is as given in equation (22).
The expression Vvp(t) for the case of white noise is obtained by substituting

equation (34) into equation (48). Carrying out the integration and using
trigonometric identities to obtain

Vvp�t� �
X1
n�1

24

�np�2
vn�l=2�
Mno0n

rA
l3

1

2odn
�1ÿ eÿ2odnt� � o2

dn

o2
dn � o02n

1

2odn

�

6 1ÿ eÿodnt6 cos 2o0ntÿ
o0n
odn

sin 2o0nt
� �� �

� o2
dn

o2
dn � �yn ÿ o0n�2

�yn ÿ o0n�
2o2

dn

6 ÿ sin 2ynt� eÿ2odnt sin 2o0nt�
odn

�yn ÿ o0n�
�cos 2yntÿ eÿodnt cos 2o0nt�

�

� o2
dn

o2
dn � �o0n � yn�2

�o0n � yn�
2o2

dn

�
sin 2ynt� eÿ2odnt sin 2o0nt

ÿ odn

�o0n � yn� �cos 2yntÿ eÿ2odnt cos 2o0nt�
�1=2

: �49�

In a similar fashion the expression Vvp(t) for the constant covariance case is
obtained by substituting equation (35) into equation (48) to yield
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Vvp�t� �
X1
n�1

Pvn�l=2�
2Mno0nvo

�o0n � yn�2
�o0n � yn�2 � o2

dn

1

�o0n � yn� �sin ynt� eÿodnt

�"

6 sino0nt� �
odn

�o0n � yn�2
�cos yntÿ eÿodnt coso0nt�

ÿ �o0n ÿ yn�2
�o0n ÿ yn�2 � o2

dn

1

�o0n ÿ yn� �e
ÿodnt sino0nt

�

ÿ sin ynt� odn

�o0n ÿ yn�2
�cos yntÿ eÿodnt coso0nt�

)#
�50�

The random response of a Timoshenko beam is solved by considering the
random part of equations (7) and (8). Upon using the ®nite integral
transformation approach and then using a Laplace transformation [8], one
obtains the following form of the generalized de¯ection

qo�n, s� � L�Po�t�� 1

rADs
yn

s2 � y2n
�s2 ÿ 2iOs� b2�, �51�

where

b2 � C2
1

np
l

� �2
� C2

ro

� �
�52�

in which ro is the radius of gyration of the cross-section of the beam, and

C2
1 � E=r and C2

2 ÿ KAG=rA, �53�

Ds � �sÿ ion1��sÿ ion2��sÿ ion3��sÿ ion4�: �54�

on1, on2 , on3 and on4 are de®ned in Appendix C. Using the convolution theorem
to obtain

qo�t� � yn
rA

� ��t
0

Po�t��A1e
ion1�tÿt� � A2e

ion3�tÿt� � A3e
ion3�tÿt�

� A4e
ion4�tÿt� � A5e

iyn�tÿt� � A6e
ÿiyn�tÿt�� dt: �55�

So the covariance of the generalized de¯ection can be written as:
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Cqnqj�t1, t2� �
yn
rA

� �2�t
0

�t
0

�A1e
ion1�t1ÿt1� � A2e

ion2�t1ÿt1� � A3e
ion3�t1ÿt1�

� A4e
ion4�t1ÿt1� � A5e

iyn�t1ÿt1� � A6e
ÿiyn�t1ÿt1��

6�A1e
ion1�t2ÿt2� � A2e

ion2�t2ÿt2� � A3e
ion3�t3ÿt3�

� A4e
ion4�t2ÿt2� � A5e

iyn�t2ÿt2� � A6e
ÿiyn�t2ÿt2��CPP�t1, t2� dt1 dt2: �56�

It follows that the variance of the de¯ection can be calculated from

s2v�x, t� �
2ynvn�x�

rA

� �2�t
0

�t
0

�A1e
ion1�t1ÿt1� � A2e

ion2�t1ÿt1� � A3e
ion3�t1ÿt1�

� A4e
ion4�t1ÿt1� � A5e

iyn�t1ÿt1� � A6e
ÿiyn�t1ÿt1��

6�A1e
ion1�t2ÿt2� � A2e

ion2�t2ÿt2� � A3e
ion3�t3ÿt3�

� A4e
ion4�t2ÿt2� � A5e

iyn�t2ÿt2� � A6e
ÿiyn�t2ÿt2��CPP�t1, t2� dt1 dt2: �57�

This equation represents a general form of the variance of a Timoshenko beam
subjected to a random moving force with constant velocity where A1±A6 can be
found in Appendix A. Substituting equation (34) into equation (57), it follows
that the expression Vvp(t) for the case of white noise is written as

Vvp�t� �
X1
n�1

ÿ96iynvn�l=2�
l4�o1�1=2

 !
EI

rA

� �
B1

o1
�eio1t ÿ 1� � B2

o2
�eio2t ÿ 1� � B3

o3
�eio3t ÿ 1�

�

� B4

o4
�eio4t ÿ 1� � B5

o5
�eio5t ÿ 1� � B6

o6
�eio6t ÿ 1� � B7

o7
�eio7t ÿ 1�

� B8

o8
�eio8t ÿ 1� � B9

o9
�eio9t ÿ 1� � B10

o10
�eio10t ÿ 1� � B11

o11
�eio11t ÿ 1�

� B12

o12
�eio12t ÿ 1� � B13

o13
�eio13t ÿ 1� � B14

o14
�eio14t ÿ 1� � B15

o15
�eio15t ÿ 1�

� B16

o16
�eio16t ÿ 1� � B17

o17
�eio17t ÿ 1� � B18

o18
�eio18t ÿ 1� � B19

o19
�eio19t ÿ 1�

� B20

o20
�eio20t ÿ 1� � B21

o21
�eio21t ÿ 1�

�1=2

�58�

where the coef®cients B1±B21 are de®ned in Appendix B.
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For the case of constant covariance, the expression Vvp(t) is written as

Vvp�t� �
X1
n�1

ÿ96iyn
l4

� �
EI

rA

� �
vn�l=2� A1

on1
�eion1

t ÿ 1� � A2

on2
�eion2

t ÿ 1�
�

� A3

on3
�eion3t ÿ 1� � A4

on4
�eiyn4t ÿ 1� � A5

yn
�eiynt ÿ 1� � A6

yn
�1ÿ eÿiynt�

�
�59�

3. NUMERICAL EXAMPLES AND DISCUSSION

In order to study the nature of the random response of a rotating shaft subje-t
to a random load moving with onstant velocity, the following parameters are
de®ned: a� c/ccr is the load speed parameter, where ccr is the critical speed of the
load and corresponds physically to the case when the frequency of the load (y) is
equal to the fundamental frequency of a simply supported Euler±Bernoulli beam
o1EB , �O=O/o1 is the non-dimensional rotational speed of the beam, x/l is the
non-dimensional position along the shaft, b� pro/l is the Rayleigh beam
coef®cient, which for a circular cross-section relates the diameter of the beam to
its length and S� ct/l is the dimensionless time. In the numerical study the load
speed parameter has been considered for two different values namely: (1) a� 0�5,

(a)
1.8

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

0.0

V
vp

 (t
)

(b)

T

T

T

E,R

E,R

E,R

(c)
1.8

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

0.0
0.2 0.4 0.6 0.80.0 1.0

S = ct/l

(d)

0.2 0.4

T

0.6 0.80.0 1.0

E
R

Figure l. Random dynamic effect versus time, a� 0�5, white noise; T: Timoshenko, R: Rayleigh,
E: Euler±Bernoulli model. (a) �O� 0�0, b� 0�075; (b) �O� 0�0, b� 0�2; (c) �O� 2�5, b� 0�075; (d)
�O� 2�5, b� 0�2.
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the load velocity is equal to half the critical speed ccr ; (2) a� 1�0, the load speed
and critical speed are equal.
Two values for the rotational speed parameter are studied, �O� 0�0 and 2�5.

The Rayleigh beam coef®cient is studied for two values namely b� 0�075 and
0�2. To clarify the analysis, the time variation of the functions Vvp(t),
corresponding to the coef®cient of variation of the de¯ection at the mid-span of
the beam for the three models, namely Euler±Bernoulli, Rayleigh and
Timoshenko beam models are plotted on the same ®gure for comparison
between the three models. Different combinations of the two types of
covariances, namely, white noise and constant covariance are studied for the
three beam models and the effect of the parameter b is considered. Also the
effect of rotational speed of the beam as well as the relation between the speed
parameter a and the maximum values of the function Vvp(t) are studied.
Figures 1 and 2 show the relation between the function Vvp(t) and the

dimensionless time S for the case of white noise. Figure 1(a) shows the function
Vvp(t) for a� 0�5, and the non-rotating beam �O� 0�0 where the three models are
identical in their behavior, especially for the Euler±Bernoulli and Rayleigh
models. Increasing the Rayleigh beam coef®cient b, Figure 1(b) shows an
increase in the value of the Vvp(t) for the Timoshenko model while the two other
models remain unaffected. Figures 1(c) and (d) show the same relation but for
�O� 2�5 where there is a large effect on the Rayleigh beam especially for b� 0�2.
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Figure 2. Random dynamic effect versus time, a� 1�0, white noise; T: Timoshenko, R: Ray-
leigh, E: Euler±Bernoulli model. (a) �O� 0�0, b� 0�075; (b) �O� 0�0, b� 0�2; (c) �O� 2�5, b� 0�075;
(d) �O� 2�5, b� 0�2.
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Figure 3. Random dynamic effect versus time, a� 0�5, constant covariance: T: Timoshenko, R:
Rayleigh, E: Euler±Bernoulli model. (a) �O� 0�0, b� 0�075; (b) �O� 0�0, b� 0�2; (c) �O� 2�5,
b� 0�075; (d) �O� 2�5, b� 0�2.
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Figure 4. Random dynamic effect versus time, a� 1�0, constant covariance; T: Timoshenko, R:
Rayleigh, E: Euler±Bernoulli model. (a) �O� 0�0, b� 0�075; (b) �O� 0�0, b� 0�2; (c) �O� 2�5,
b� 0�075; (d) �O� 2�5, b� 0�2.
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Figure 2 shows the case of Figure 1 but for a� 1�0. It is noticed that the
dynamic effect is decreased with increasing a and the variations among different
beam models are less pronounced at large values of a. It is also observed that the
dynamic effect is more sensitive to �O at smaller values of a. Similar behavior is
observed in Figures 3 and 4 in which the relation between the function Vvp(t)
and the dimensionless time for the case of constant covarince is shown. The
behavior of the maximum value of the function Vvp(t), max Vvp(t), is shown in
Figures 5±10. It is shown as a function of the speed parameter a for different
Rayleigh beam coef®cients. Figure 5 shows the maxVvp(t) for the Euler±
Bernoulli model and constant covariance case. It shows that the maximum
variance of the beam ®rst increases for values of the dimensionless speed
parameter up to about a� 0�5 to 0�7 and then slightly decreases. This ®gure also
shows as expected that the rotational speed and the Rayleigh beam coef®cient
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Figure 5. Maxima of Vvp(t) as a function of the speed parameter a, Euler±Bernoulli model;
constant covariance.
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Figure 6. Maxima of Vvp(t) as a function of the speed parameter a, Rayleigh model; constant
covariance. (a) �O� 0�0; (b) �O� 2�5. (i) b� 0�2; (ii) b� 0�15; (iii) b� 0�075.
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have no effect on the maximum value of variance. The maxVvp(t) for the
Rayleigh beam model �O� 0�0, is shown in Figure 6(a). It is clear that the effect
of b on the maximum of Vvp(t) is negligible and it is the same as the Euler±
Bernoulli case shown in Figure 5. Figure 6(b) shows the effect of b on the
maxVvp(t) for the Rayleigh beam model and �O� 2�5. It is clear that the
maxVvp(t) increases when b increases. The effect of b on the maxVvp(t) is more
pronounced for the Timoshenko beam model than the other two models, as
shown in Figures 7(a) and (b); however, the maxVvp(t) is not sensitive to changes
in �O in the case of the Timoshenko beam model. The maximum value of the
variance for the white noise case is shown in Figures 8±10 for the three beam
models and for different values of b. Different general behavior is observed in
this case than in the case of constant covariance. The case of the Euler±
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Figure 7. Maxima of Vvp(t) as a function of the speed parameter a, Timoshenko model; con-
stant covariance. (a) �O� 0�0; (b) �O� 2�5. (i) b� 0�2; (ii) b� 0�15; (iii) b� 0�075.
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Figure 8. Maxima of Vvp(t) as a function of the speed parameter a, Euler±Bernoulli model;
white noise.
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Bernoulli model is shown in Figure 8. It is clear that the variance decreases as a
increases; b and �O have no effect on this model. Figure 9(a) shows the maxVvp(t)
for the Rayleigh model in the case of �O� 0�0. Similarly, Figure 9(b) shows the
case of Figure 9(a) but for �O� 2�5. It is noticed that the maxVvp(t) is more
sensitive to b at smaller values of a, up to a� 0�26. This sensitivity diminishes as
a increases. Figures 10(a) and (b) show the maximum value of the response for
the white noise case and for the Timoshenko beam model. Figure 10(a) shows
the case of �O� 0�0. The effect of b is clear as also shown in the constant
covariance case, Figure 7(a). Figure 10(b) shows the case of �O� 2�5. Again, this
model is not sensitive to changes in �O as in the case of the Rayleigh beam model.
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Figure 9. Maxima of Vvp(t) as a function of the speed parameter a, Rayleigh model; white
noise. (a) �O� 0�0; (b) �O� 2�5. (i) b� 0�2; (ii) b� 0�15; (iii) b� 0�075.
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Figure 10. Maxima of Vvp(t) as a function of the speed parameter a, Rayleigh model; white
noise. (a) �O� 0�0; (b) �O� 2�5. (i) b� 0�2; (ii) b� 0�15; (iii) b� 0�075.
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4. CONCLUSIONS

In conclusion, a rotating simply supported beam subjected to a random load
moving with constant velocity is modelled using three different beam theories,
namely Euler±Bernoulli, Rayleigh, and Timoshenko beam models. Analytical
closed forms of the variance are obtained. The variance of the de¯ection at the
mid-span point of the beam is calculated for different cases. The results indicate
that the Timoshenko model has the largest dynamic effect among the three
models considered. The dynamic effect is more sensitive to the chosen model at
large b and as the force gets towards the end of the beam. The results show that
the dynamic effect is larger at smaller values of a.
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APPENDIX A

The complex coef®cients in equation (57):

A1 � ÿi�o2
n1 ÿ 2Oon1 ÿ b2�=��on1 ÿ on2��on1 ÿ on3��on1 ÿ on4��ÿo2

n1 � y2n��,

A2 � ÿi�o2
n2 ÿ 2Oon2 ÿ b2�=��on2 ÿ on1��on2 ÿ on3��on2 ÿ on4��ÿo2

n2 � y2n��,

A3 � ÿi�o2
n3 ÿ 2Oon3 ÿ b2�=��on3 ÿ on1��on3 ÿ on2��on3 ÿ on4��ÿo2

n3 � y2n��,

A4 � ÿi�o2
n4 ÿ 2Oon4 ÿ b2�=��on4 ÿ on1��on4 ÿ on2��on4 ÿ on3��ÿo2

n1 � y2n��,

A5 � ÿi�ÿy2n � 2Oyn � b2�=��2yn�yn ÿ on1��yn ÿ on2��yn ÿ on3��yn ÿ on4��,

A6 � ÿi�y2n � 2Oyn ÿ b2�=�2yn�yn � on1��yn � on2��yn � on3��yn � on4��:
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APPENDIX B

The complex coef®cients in equation (58)

B1 � A2
1, B11 � 2A4 A5 ,

B2 � A2
2, B12 � 2A4 A6 ,

B3 � A2
3, B13 � 2A1 A4 ,

B4 � 2A2 A3 , B14 � 2A1 A5 ,

B5 � 2A1 A2 , B15 � 2A1 A6 ,

B6 � 2A3 A1 , B16 � 2A2 A4 ,

B7 � A2
4 , B17 � 2A2 A5 ,

B8 � A2
5 , B18 � 2A2 A6 ,

B9 � A2
6 , B19 � 2A3 A4 ,

B10 � 2A5 A6 , B20 � 2A3 A5 ,

B21 � 2A3 A6 :

APPENDIX C

The frequency terms that appear in equations (54±59)

o1 � 2on1 , o11 � on4 � yn ,

o2 � 2on2 , o12 � on4 ÿ yn ,

o3 � 2on3 , o13 � on1 � on4 ,

o4 � on2 � on3 , o14 � on1 � yn ,

o5 � on1 � on2 , o15 � on1 ÿ yn ,

o6 � on1 � on3 , o16 � on2 � on4 ,

o7 � on4 , o17 � on2 � yn ,

o8 � 2yn , w18 � wn2 ÿ yn ,

o9 � ÿ2yn , o19 � on3 � on4 ,

o10 � 0�0, o20 � on3 � yn ,

o21 � on3 ÿ yn:


	INTRODUCTION
	FORMULATION
	Figure 1

	NUMERICAL EXAMPLES AND DISCUSSION
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10

	CONCLUSIONS
	REFERENCES
	APPENDIX A
	APPENDIX B
	APPENDIX C

